A tight upper bound on the (2, 1)-total labeling number of outerplanar graphs
نویسندگان
چکیده
A (2, 1)-total labeling of a graph G is an assignment f from the vertex set V(G) and the edge set E(G) to the set {0, 1, . . . , k} of nonnegative integers such that | f (x) − f (y)| ≥ 2 if x is a vertex and y is an edge incident to x, and | f (x) − f (y)| ≥ 1 if x and y are a pair of adjacent vertices or a pair of adjacent edges, for all x and y in V(G) ∪ E(G). The (2, 1)-total labeling number λ2 (G) of a graph G is defined as the minimum k among all possible assignments. In [4], Chen and Wang conjectured that all outerplanar graphs G satisfy λ2 (G) ≤ ∆(G) + 2, where ∆(G) is the maximum degree of G, while they also showed that it is true for G with ∆(G) ≥ 5. In this paper, we solve their conjecture completely, by proving that λ2 (G) ≤ ∆(G) + 2 even in the case of ∆(G) ≤ 4.
منابع مشابه
On trees attaining an upper bound on the total domination number
A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$. The total domination number of a graph $G$, denoted by $gamma_t(G)$, is~the minimum cardinality of a total dominating set of $G$. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004), 6...
متن کاملSharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
متن کاملOn dominating sets of maximal outerplanar graphs
A dominating set of a graph is a set S of vertices such that every vertex in the graph is either in S or is adjacent to a vertex in S. The domination number of a graph G, denoted γ (G), is theminimum cardinality of a dominating set ofG. We show that ifG is an n-vertexmaximal outerplanar graph, then γ (G) ≤ (n + t)/4, where t is the number of vertices of degree 2 in G. We show that this bound is...
متن کاملThe distinguishing chromatic number of bipartite graphs of girth at least six
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
متن کاملHamiltonian Paths and Cycles in Planar Graphs
We examine the problem of counting the number of Hamiltonian paths and Hamiltonian cycles in outerplanar graphs and planar graphs, respectively. We give an O(nαn) upper bound and an Ω(αn) lower bound on the maximum number of Hamiltonian paths in an outerplanar graph with n vertices, where α ≈ 1.46557 is the unique real root of α = α + 1. For any positive integer n ≥ 6, we define an outerplanar ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Discrete Algorithms
دوره 14 شماره
صفحات -
تاریخ انتشار 2012